

GCSFS

A Python filesystem abstraction of Google Cloud Storage (GCS) implemented as a PyFilesystem2 [https://github.com/PyFilesystem/pyfilesystem2] extension.

[image: _images/fs-gcsfs.svg]
 [https://pypi.org/project/fs-gcsfs/][image: _images/fs-gcsfs1.svg]
 [https://pypi.org/project/fs-gcsfs/][image: _images/gcsfs.svg]
 [https://travis-ci.org/Othoz/gcsfs][image: _images/f0f5f4b7e7b3a5b62370d05dad70ae153dc88fca.svg]
 [https://fs-gcsfs.readthedocs.io/en/latest/?badge=latest]With GCSFS, you can interact with Google Cloud Storage [https://cloud.google.com/storage/] as if it was a regular filesystem.

Apart from the nicer interface, this will highly decouple your code from the underlying storage mechanism: Exchanging the storage backend with an
in-memory filesystem [https://pyfilesystem2.readthedocs.io/en/latest/reference/memoryfs.html] for testing or any other
filesystem like S3FS [https://github.com/pyfilesystem/s3fs] becomes as easy as replacing gs://bucket_name with mem:// or s3://bucket_name.

For a full reference on all the PyFilesystem possibilities, take a look at the
PyFilesystem Docs [https://pyfilesystem2.readthedocs.io/en/latest/index.html]!

Documentation

	GCSFS Documentation [http://fs-gcsfs.readthedocs.io/en/latest/]

	PyFilesystem Wiki [https://www.pyfilesystem.org]

	PyFilesystem Reference [https://docs.pyfilesystem.org/en/latest/reference/base.html]

Installing

Install the latest GCSFS version by running:

$ pip install fs-gcsfs

Or in case you are using conda:

$ conda install -c conda-forge fs-gcsfs

Examples

Instantiating a filesystem on Google Cloud Storage (for a full reference visit the
Documentation [http://fs-gcsfs.readthedocs.io/en/latest/index.html#reference]):

from fs_gcsfs import GCSFS
gcsfs = GCSFS(bucket_name="mybucket")

Alternatively you can use a FS URL [https://pyfilesystem2.readthedocs.io/en/latest/openers.html] to open up a filesystem:

from fs import open_fs
gcsfs = open_fs("gs://mybucket/root_path?project=test&api_endpoint=http%3A//localhost%3A8888&strict=False")

Supported query parameters are:

	project (str): Google Cloud project to use

	api_endpoint (str): URL-encoded endpoint that will be passed to the GCS client’s client_options [https://googleapis.dev/python/google-api-core/latest/client_options.html#google.api_core.client_options.ClientOptions]

	strict (“True” or “False”): Whether GCSFS will be opened in strict mode

You can use GCSFS like your local filesystem:

>>> from fs_gcsfs import GCSFS
>>> gcsfs = GCSFS(bucket_name="mybucket")
>>> gcsfs.tree()
├── foo
│ ├── bar
│ │ ├── file1.txt
│ │ └── file2.csv
│ └── baz
│ └── file3.txt
└── file4.json
>>> gcsfs.listdir("foo")
["bar", "baz"]
>>> gcsfs.isdir("foo/bar")
True

Uploading a file is as easy as:

from fs_gcsfs import GCSFS
gcsfs = GCSFS(bucket_name="mybucket")
with open("local/path/image.jpg", "rb") as local_file:
 with gcsfs.open("path/on/bucket/image.jpg", "wb") as gcs_file:
 gcs_file.write(local_file.read())

You can even sync an entire bucket on your local filesystem by using PyFilesystem’s utility methods:

from fs_gcsfs import GCSFS
from fs.osfs import OSFS
from fs.copy import copy_fs

gcsfs = GCSFS(bucket_name="mybucket")
local_fs = OSFS("local/path")

copy_fs(gcsfs, local_fs)

For exploring all the possibilities of GCSFS and other filesystems implementing the PyFilesystem interface, we recommend visiting the official
PyFilesystem Docs [https://pyfilesystem2.readthedocs.io/en/latest/index.html]!

Development

To develop on this project make sure you have pipenv [https://pipenv.readthedocs.io/en/latest/] installed
and run the following from the root directory of the project:

$ pipenv install --dev --three

This will create a virtualenv with all packages and dev-packages installed.

Tests

All CI tests run against an actual GCS bucket provided by Othoz [http://othoz.com/].

In order to run the tests against your own bucket,
make sure to set up a Service Account [https://cloud.google.com/iam/docs/service-accounts] with all necessary permissions:

	storage.objects.get

	storage.objects.list

	storage.objects.create

	storage.objects.update

	storage.objects.delete

All five permissions listed above are e.g. included in the predefined Cloud Storage IAM Role [https://cloud.google.com/storage/docs/access-control/iam-roles] roles/storage.objectAdmin.

Expose your bucket name as an environment variable $TEST_BUCKET and run the tests via:

$ pipenv run pytest

Note that the tests mostly wait for I/O, therefore it makes sense to highly parallelize them with xdist [https://github.com/pytest-dev/pytest-xdist], e.g. by running the tests with:

$ pipenv run pytest -n 10

Credits

Credits go to S3FS [https://github.com/PyFilesystem/s3fs] which was the main source of inspiration and shares a lot of code with GCSFS.

Limitations

A filesystem built on top of an object store like GCS suffers from the same limitations as the ones
mentioned in S3FS [https://fs-s3fs.readthedocs.io/en/latest/#limitations].

GCS does not offer true directories which is why GCSFS (as well as S3FS) will simulate the existence
of a directory called foo by adding an empty blob called foo/. Any filesystem content that was not created
via GCSFS will lack these directory markers which may lead to wrong behaviour. For example gcsfs.isdir("bar")
will return False if the marker blob bar/ does not exist, even though there might exist a blob called bar/baz.txt.

To overcome this you can call the utility method fix_storage() on your GCSFS instance
which will walk the entire filesystem (i.e. the entire bucket or the “subdirectory” you specified via root_path) and add all missing directory markers.

Warning

Listing and fixing large buckets may take some time!

Reference

For a full reference of all available methods of GCSFS visit the documentation of
fs.base.FS [https://pyfilesystem2.readthedocs.io/en/latest/reference/base.html]!

GCSFS

	
class fs_gcsfs.GCSFS(bucket_name: str, root_path: str = None, create: bool = False, client: google.cloud.storage.client.Client = None, retry: int = 5, strict: bool = True)

	A Google Cloud Storage filesystem for PyFilesystem [https://pyfilesystem.org].

This implementation is based on S3FS [https://github.com/PyFilesystem/s3fs].

	Args:

	bucket_name: The GCS bucket name.
root_path: The root directory within the GCS Bucket.
create: Whether to create root_path on initialization or not. If root_path does not yet exist and create=False a CreateFailed

exception will be raised. To disable root_path validation entirely set strict=False.

client: A google.storage.Client exposing the google storage API.
strict: When True (default) GCSFS will follow the PyFilesystem specification exactly. Set to False to disable validation of destination paths

which may speed up some operations.

	
fix_storage() → None

	Utility function that walks the entire root_path and makes sure that all intermediate directories are correctly marked with empty blobs.

As GCS is no real file system but only a key-value store, there is also no concept of folders. S3FS and GCSFS overcome this limitation by adding
empty files with the name “<path>/” every time a directory is created, see https://fs-gcsfs.readthedocs.io/en/latest/#limitations.

GCSMap

	
GCSFS.get_mapper() → fs_gcsfs._gcsfs.GCSMap

	Returns a MutableMapping that represents the filesystem.

The keys of the mapping become files and the values (which must be bytes) the contents of those files.
This is particularly useful to be used with libraries such as xarray [http://xarray.pydata.org/] or zarr [https://zarr.readthedocs.io/].

Powered By

This PyFilesystem extension was created by Othoz GmbH [http://othoz.com/]

Index

 F
 | G

F

 	
 	fix_storage() (fs_gcsfs.GCSFS method)

G

 	
 	GCSFS (class in fs_gcsfs)

 	
 	get_mapper() (fs_gcsfs.GCSFS method)

 nav.xhtml

 Table of Contents

 		
 GCSFS

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

